How Should We Design Government Policies to Stimulate Innovation?

Last Friday was our 20th Annual POWER Conference. Thanks to all who attended and an especially large thanks to the conference sponsors who made the event possible. For those of you who couldn’t attend, the program is available here with links to several of the research papers that were presented.

One of the highlights was a new paper called, “Financing Constraints as Barriers to Innovation: Evidence from R&D Grants to Energy Startups”, by Sabrina Howell, a PhD Candidate at Harvard who does fascinating work on energy and innovation finance.

The paper focuses on the U.S. Department of Energy’s Small Business Innovation Research grant program. The SBIR program has been around since 1983, and provides more than $2 billion annually in grants to small, high-tech firms. DOE’s program funds technologies across the energy spectrum — previous recipients include Sunpower, First Solar, Evergreen Solar, Oscilla Power, and A123.


The results in the paper are striking. Howell finds that receiving an early-stage “Phase 1” grant of just $150,000 approximately doubles the probability that a firm will subsequently receive venture capital (VC) funding. Recipients of Phase 1 grants produce more patents, are more likely to commercialize their technologies, and are more likely to exit via IPO or acquisition.

In order to perform the analysis, Howell obtained internal data on successful and unsuccessful applications from 400+ SBIR competitions over a 20-year period. She exploits the fact that SBIR applications are ranked by DOE reviewers, but that only applications above a certain cutoff receive funding and reviewers don’t know what the cutoff will be until after all the applications have been ranked. These rankings allow her to implement a compelling quasi-experimental research design.

 Probability of Venture Capital Financing After Grant Decision Fig1

This figure from her paper illustrates the main idea. The red vertical line indicates the cutoff for a Phase 1 SBIR grant.  Applications to the right of the cutoff were funded, while applications to the left were not. The figure shows for each rank the fraction of firms that subsequently received VC financing. Grants increase this probability from about 10% to 20%, and the difference is strongly statistically significant as indicated by the 95th percentile confidence intervals.

This “rankings” based approach is a significant advance because it allows Howell to make causal statements about SBIR grants. How successful would SunPower, First Solar, and Oscilla Power have been without winning an SBIR grant? This is a very hard question. But what these rankings allow Howell to do is to compare applications that just barely won a grant with those that barely missed the cutoff.  Near the cutoff her approach is akin to a randomized experiment, comparing firms that DOE reviewers deemed similar.

Firms who receive one of these $150,000 Phase 1 grants can then apply for a second round. Phase 2 grants are $1 million and intended to fund later stage demonstrations. Though Phase 1 grants have large positive effects on subsequent VC financing and other outcomes, Phase 2 grants are much less successful, with tiny or negative effects on VC financing and small positive effects on patents. This may reflect selection. For example, Howell finds that the more successful Phase 1 recipients tend not to apply for Phase 2, so the composition of applicants in Phase 2 tends to be lower quality on average.

These results have important policy implications. The DOE spends much more on Phase 2 than Phase 1, but Howell’s results suggest that it probably would be better to allocate more to Phase 1. This is consistent with general economic intuition. For later-stage projects, private sector funding is likely to work better because more information is available and the investments are larger scale.

Some critics of government R&D programs argue that programs like SBIR just crowd out private investment. But if this were the case, you would not expect to see any impact of these grants on subsequent VC funding. Or, more starkly, you would expect to see more private financing received by unsuccessful applicants. Howell’s paper doesn’t tell us exactly what the right level of government funding is, but the paper’s results provide clear evidence against this crowd out argument.

Howell’s website (here) includes a link to the paper and, if you are really interested, to all eight appendices! We need much more research like this aimed at understanding how to best stimulate innovation. It is hard to think of any more important topic, particularly in the energy sector given the enormous scope for spillovers and positive externalities.

Innovation needs to take center stage not only in Washington DC, but also here in California. As Severin pointed out in a blog post here, California produces only 1% of the world’s greenhouse gas emissions. So the success or failure of California’s climate policies hinges on stimulating innovation that can be exported to the rest of the world. We need more emphasis in all of our programs on knowledge creation and we need to rigorously evaluate all of our policies along this dimension.

Posted in Uncategorized | Tagged , , | 6 Comments

The Economics of EV Charging Stations

I live in the northern end of the Silicon Valley and here EVs and Plug-in hybrids are everywhere. From Tesla P85s to C-Max Energis – it’s what the cool kids drive. As the minority academic economist in this nerdster crowd, I am always on the lookout for potential sources of inefficiency and how to get rid of them. The most sobering realization I had after purchasing my shiny new ride is the dearth of charging stations. When I find a spot to charge, I am usually shocked by the prices charged for electricity. One example of this inefficiency can be found at UC Berkeley: We have 1 (!) charger for a university community of 40,000+. What really makes my economic brain cells short circuit is that if you can get the spot, electricity is free (!!).

ev charging station
Given the proximity of the charger to the engineering department, I initially thought this was probably one of the very first EV chargers in California and it is lacking a meter. Surely no one else would be giving away a valuable resource for free. Wrong. I made the fateful mistake of logging onto the Chargepoint site and checking pricing for their network of EV stations in the Bay Area (their charging stations are owned by individuals/firms – they just provide billing and IT infrastructure). Turns out the vast majority of EV chargers in the Bay Area — please start breathing into a paper bag now — provide drivers with free, zero cents per kWh, FREE electricity! I found a few charging stations, which charge a fixed fee (in most cases $0.99) and no variable rate as well as a few stations, which charge $0.49 per kWh.

The giant hippie heart beating in my chest is trying to convince my neoclassical brain that we need free charging in order to incentivize the rollout of this technology! Would you like free electrons with your $7500 federal tax credit plus state subsidies? Well who doesn’t? Hook me up! While this might make some sense in the early days of rolling out a new technology, this cannot be the long run equilibrium.

ev cars
And we are moving out of the cocoon stage into a world where EVs and Plugins are everywhere and need power. A sign of this is an email I got from Chargepoint a few weeks ago stating:

“PG&E has sent a proposal to the California Public Utilities Commission (CPUC) to use your money to own and operate new EV charging stations in your neighborhood. This extension of PG&E’s monopoly will destroy the competitive charging station market and stall the innovation of new features and technologies.”

This gave me food for thought. Those of us living in single-family homes charge our vehicles at home, where we pay the typical inefficient tier based rates (at my house you also have an option for two types of EV rates, but one is pretty expensive and the other requires installation of a second meter which can cost thousands of dollars). All of these are certainly greater than 0 cents per kWh (usually between 20 and 40 cents per kWh). We have our own outlets, or fancy-schmancy quick charging stations, right in our driveways where we can show off our greenness to our not-so-green neighbors.

Well who needs more charging stations? Two types of people. Folks living in a multifamily housing situation and people who need juice during the day (while parked at work or out and about). This group of individuals is not out looking for free electricity, but I would conjecture that they are simply looking for access to an EV plug in many locations. There are about the same number of public charging stations in my town as there are Starbucks. For a successful rollout of EVs, this density has to increase very rapidly.

So I will follow my friend Catherine Wolfram’s new blogging strategy and ask – why should I sign this petition by Chargepoint? More charging stations in my neighborhood, regardless of whether they are operated by my utility or not, strike me as a good thing from a consumer point of view. The proposal does not kick the Chargepoints of the world out of the EV charging business. Yes, the utility is a monopoly. But it is a regulated monopoly. It does not get to charge the markup the textbook monopolist charges. Come join me in my Econ 100 classroom one day and I’ll explain this to you.

Yes, a regulated utility does not have the same strong incentives to innovate – in theory – as a successful startup, which operates the largest network of charging stations in the country. But so what? The technology is pretty simple. A plug hooked up to a 240V outlet and a parking space with a card reader so you can charge me for the electricity I am using. This is an example where supply of charging stations might really drive demand for a technology.

The question that arises of course is what should the price of electricity be at these charging stations? I would argue that the price should be the real time price of electricity with potentially a fixed fee per charge, which accounts for the provision and maintenance of the charging station. If you really need a charge on the hottest day of the year and the price is really high, you’ll pay more. Or you can wait a few hours until it cools down and have an ice cream. If that does not pass hearings, then I would at least hope for a time-of-use rate structure. It’s a brave new world and I hope one in which we will charge for electricity – correctly. Or we might as well start giving gasoline away for free as well.

Posted in Uncategorized | Tagged , | 33 Comments

Better Ways to Stop Natural Gas Pipeline Leaks

Carbon dioxide has received the bulk of policymakers’ attention as the villain of climate change. Now, its henchman methane is facing scrutiny. Methane is an attractive target. It is much nastier than carbon dioxide in the atmosphere. Over one hundred years, a kilogram of methane has a 28-times greater impact on global warming than a single kilogram of carbon dioxide.

Unfortunately, designing practical policies to cut methane emissions is tough. Unlike carbon dioxide, which can be pinned on burning fossil fuels in power plants and vehicles, methane comes from millions of diverse sources. Methane comes from enteric fermentation (the technical term for cow burps), manure (cows again), landfills, and water treatment plants.

Nonetheless, the Environmental Protection Agency (EPA) is going ahead with regulations and has announced plans to go after the largest source of methane emissions—the oil and gas industry. In 2013, methane leaking from natural gas systems was about 2.8% of total energy-related greenhouse gas emissions. The prevalence of leaks may mean that natural gas generation is worse than coal-powered generation for climate change. Meredith explored this in a prior blog.

To me it’s a big puzzle why there’s any methane leaking. Why is the oil and gas industry allowing one of its major products, natural gas, to float away into the atmosphere?

One explanation is that oil and gas producers are plugging some leaks, but not all because plugging all leaks is expensive.  At some point, for private industry, the cost of repairs is not cost justified. The cost exceeds the market value of the gas saved. Policy could reduce leaks further by making the producers face the full social cost of the leaks, including the climate change impacts.

However, the part of the natural gas system that most worries me is the transportation network.

For the most part, the owners and operators of the transportation networks don’t lose money when gas leaks from their infrastructure, and they don’t benefit when they stop leaks. If the amount of gas delivered by a pipeline is less than the gas entering the pipeline, then the shipper, in the case of interstate pipelines, or the end-use customer, in the case of local distribution companies picks up the tab.

This occurs due to cost pass-through mechanisms. The rates charged by pipelines and distribution companies explicitly assume that some gas will be lost. If leaks increase or decrease, rates are adjusted so that shippers or customers continue to bear the cost.

This is a common arrangement in the world of utility regulation. Retail electric and gas utilities have fuel adjustment clauses that pass through changing fuel costs and decoupling mechanisms that pass through capital costs.

Recognizing that these incentive problems may be causing underinvestment in fixing the leaks, federal and state utility regulators are getting involved.

The Federal Energy Regulatory Commission (FERC), which sets rates for the country’s interstate natural gas pipelines, launched a new docket last November. FERC proposes to allow pipelines to recover capital expenditures made to enhance reliability, improve safety and meet environmental objectives. This would be allowed outside of the normal rate-setting process.

In January and February FERC heard from interested parties. The pipeline owners love the idea of being able to collect the cost of repairs from customers. What utility wouldn’t? The environmental groups want leaks reduced, but fret that the utilities will favor expensive capital fixes over low-cost operational solutions. The shippers are not happy at all. They doubt the investments will be cost-effective and fear pipelines will spend money with abandon.

There’s no obvious solution. The principal-agent problem persists with or without FERC’s proposed policy. A pipeline’s interests don’t align with its shippers’.

What I find most jarring, however, is the lack of good empirical leak data. Regulators are developing policy in a data vacuum.

Turns out that the EPA depends on a 1996 study that is based on a very small number of leak measurements. Using the study, the EPA calculates “per mile” emissions factors for cast iron pipes, unprotected steel pipes, plastic pipes, etc. Then the EPA estimates total US emissions by multiplying the factors by the miles of each pipe type in service across the country. This recent report from the EPA’s Office of Inspector General provides a critique of the EPA’s emissions factors.

A cast iron pipe that leaked.

A cast iron pipe that leaked  (

The 1996 study may have been the best available in the past, but times have changed.

The rapidly falling cost of communicating sensors and cloud computing is enabling real-time measurement that was cost prohibitive in the past. This trend is called the “Internet of Things” or Industry 4.0, in the industrial context. Now it’s feasible to monitor natural gas pipelines and compressors at many locations on a real-time basis.

The value of lost gas is substantial. The DOE estimates that each year 110 Bcf per is lost from transmission infrastructure alone. That equates to over $300 million per year at current natural gas futures prices. Applying a social cost of carbon of $37 per metric ton of carbon dioxide, the cost exceeds $2 billion. Investments in sensors are easy to justify with so much value at stake.

The Environmental Defense Fund and Google have launched an initiative that demonstrates one new approach to leak monitoring. In city after city they are conducting drive-by leak surveys using car-mounted measurement devices. Street View meets leak detection. In the sample maps below, each circle signifies a leak, with darker colors representing bigger leaks. The incidence of leaks varies significantly between and within cities.

Here at the Energy Institute we will soon be initiating a new project that will take advantage of new monitoring technologies in the industrial sector, to find energy saving opportunities.

Better leak detection could enable entirely new policy options. The EPA could even pursue market-based approaches that charge utilities directly for the social cost of the leaked methane.

It’s time for natural gas utilities and their regulators to join the sensor revolution. Improving measurement of natural gas leaks is a great place for federal and state regulators to start.

Posted in Uncategorized | Tagged , , , | 10 Comments

Why Did Apple Pay so Much for 130 MW of Solar? Is Google Part of the Answer?

Sometimes, we write blog posts that pose rhetorical questions in the title. This time, I have real questions. I lay out several possible answers below and would love input from blog readers.

Here’s a little background. Several weeks ago, to great fanfare, Apple and First Solar announced that Apple was paying $848 million for 25 years of the output of a 130 MW block of First Solar’s California Flats project in SE Monterey County. (The other portion of the project is under contract to PG&E.) First Solar’s press release heralded this as the “industry’s largest commercial solar deal” and Tim Cook noted that the solar electricity would offset a lot of Apple’s California consumption.

My husband, who also works in the energy industry, and I took this up at the dinner table, much to our kids’ chagrin. My husband did some quick math, and then grabbed a calculator to do the math again. He wanted to make sure he hadn’t screwed up. His calculations suggested that Apple had paid a significantly higher price compared to other recently announced power purchase agreements for solar.

He took the reported amount Apple was paying and divided by an estimate of how much electricity they would be buying. He guessed that the plant would have a capacity factor of 30% and hence produce 342,000 MWh/year (.3 x 130 MW x 8,760 hours/year), or approximately 8.5 million MWh over the life of the contract. Assuming that the reported contract value reflects the undiscounted sum of the payments under the contract, this yields an average price of approximately $100/MWh ($848 million / 8.5 million MWh).

My husband was surprised because prices for other recent solar deals have hovered around $60/MWh. The industry collectively cooed over a recent 25-year deal signed by Austin Energy to buy solar for $50/MWh.

A reporter for Forbes did a similar calculation. He used a higher capacity factor – 33% – and still seems surprised that Apple paid so much. He concludes, however, that it’s not a horrible move by Apple given that future prices for utility-supplied power may go up.

My guess is that Apple did not overpay. They are, after all, Apple.

An artist's rendering of Apple's planned campus in Cupertino (Source:

An artist’s rendering of Apple’s planned campus in Cupertino (Source:

Here are a couple conjectures:

  1. Apple is receiving the tax equity in addition to the electricity.

What does this mean? Through the end of 2016, a business that invests in a solar project is allowed to take 30 percent of the project cost as a tax credit. As I understand it (see here for a great explanation), this means that if a project costs $100 million, it will generate $30 million in potential tax savings through the Federal Investment Tax Credit (ITC). The problem is that First Solar is unlikely to have enough profits to take advantage of all the tax credits its projects generate. Historically, solar companies have sold the tax credits to banks or others in the financial sector, but, according to some reports, demand for what’s known as “tax equity” is drying up.

So, one possibility is that at least a share of what Apple bought was the tax equity on its 130 MWs. Accounting for this could make the price they paid much more reasonable. For instance, if they bought all the tax equity on the 130 MWs then we should think of the price they’re paying for electricity as just 70% of the total $850 million, since they’ll be able to use 30% of the $850 million to offset future tax liabilities.

Apple also may be able to obtain tax benefits from a share of the accelerated depreciation for which solar projects are eligible.

This is where Google comes in. Late last week, Google announced that it was investing $300 million in a fund created by Solar City. Some of the press on this deal said it was structured to allow Google to get the tax equity, which makes me more likely to believe that Apple got a similar deal with First Solar.

If this is what’s really happening, the headlines citing Apple’s $848 million purchase of solar-powered electricity are a bit misleading, at least as I see it. Sure, Apple is paying $848 million to First Solar, and part of what it’s getting is electricity, but it’s also getting the ability to avoid paying taxes in the future. To me, this is like saying I paid $10 for a sandwich, and neglecting to mention that I also got $3 back in change. Counter to First Solar’s press release, this would not just be a solar deal, but a solar and tax deal.

I can understand why companies like Apple might not boast about buying the right to pay lower taxes. It’s not in any way nefarious – and could help solar companies by keeping the market for the tax equity competitive – but it doesn’t burnish their green image in the same way that buying solar electricity to power their data centers does.

  1. Something else is missing. Apple is getting something else out of the deal?
  1. Apple did screw up. We all make mistakes, even big, smart companies.

Personally, I put my money on something along the lines of 1., but I am very curious to learn what, you, loyal and informed readers, are hearing.

Posted in Uncategorized | Tagged | 34 Comments

One university’s attempt to reduce energy waste at work

If you work outside your home, chances are you don’t pay (directly) for the energy you use at work. At my place of work, the UC Berkeley campus, most employees never see – let alone pay – their energy bills.

Of course, there are plenty of pro-social reasons to be conscientious about my energy consumption at work (climate change and tight university budgets, to name a few). But these “split incentives” (i.e., the fact that I bear none of the costs when I increase campus energy use) beg the question: How much less energy would we use at work if we were all responsible for paying our own energy bills?

windows Source:

This seems like an important question when you consider the quantity of energy consumed each year by commercial buildings (which include office buildings, retail space, restaurants, hotels, hospitals, schools, and universities). The commercial sector now accounts for over 18 percent of total U.S. energy and close to 40 percent of U.S. electricity use.



Do split incentives cause energy waste at work?

A recent paper by Matt Kahn, Nils Kok, and the late John Quigley sheds some light on this question. These authors track the electricity consumption of a large sample of commercial buildings in the Western U.S. In particular, they examine the association between lease incentive terms, occupant characteristics, and electricity consumption in commercial buildings.

They find that commercial tenants whose utilities are bundled into the rent consume significantly more electricity than tenants who pay their own bills. They also find an increase in occupancy by government (versus private sector) tenants is associated with a significant increase in the energy consumption. The authors suggest this correlation could possibly be explained by the fact that government tenants face relatively soft budget constraints.

We can’t be sure that these correlations indicate a causal relationship. But if split incentives in the commercial building sector are associated with higher energy consumption, could an un-splitting of these incentives lead to cost-effective efficiency gains? An amazingly dedicated team of energy efficiency enthusiasts here on campus set to find out.

Un-splitting incentives on the UC Berkeley campus

Back in 2012, energy costs were rising and there was a general sense that energy was being used inefficiently across campus. Campus electricity bills – on the order of $20 million annually – are managed by central campus. How can you motivate individual employees to focus on energy efficiency when they have no direct financial incentive to do so?

The Energy Incentive Program (EIP) was introduced in April 2012 to provide individual departments and units with the information – and the financial incentive – to make cost effective changes to their energy consumption. Each operating unit was assigned a baseline for each building based on electricity use in academic year 2010-2011. Units are rewarded (or charged) 10 cents per kWh for consuming below (or above) their baseline. Importantly, this financial incentive is (approximately) equal to the price the university currently pays for electricity. Units were also provided with real time feedback and improved support for building managers.

The figure below plots electricity consumption on the Berkeley central campus (in blue). The figure shows a notable drop in campus electricity consumption in the first two years of the program (FY 2012-2013). To put these trends into some sort of context, the red line plots student enrollment over the same time period. Electricity consumption has dropped below 2007 levels while student enrollment has increased. Building square footage has also increased since 2011.


(Huge thanks to Kevin Ng and Lisa McNeilly for providing UC Berkeley central campus electricity consumption data.)

This simple graph does not prove that the Energy Incentive Program caused the coincident drop in energy consumption. To credibly estimate a causal impact of the program, we would need to take much more care in constructing an estimate of what UC Berkeley electricity consumption would have looked like absent the program.

A comprehensive program evaluation is well beyond the scope of this blog, but I can offer some anecdata. Although many faculty and staff are oblivious to the incentive change, the program is on the radar screen of the people who manage department budgets and buildings. Every manager I spoke with could point to multiple projects – ranging from email reminders about phantom loads to major lighting retrofits – implemented to keep energy consumption below baseline. Office managers who had been uninterested in building maintenance before the program now closely monitor their daily energy consumption and alert facilities managers when something looks amiss. Much of the $1,869,200 paid out in incentives to date has been re-invested in energy or water efficiency improvements.

Funding for the Energy Incentive Program is scheduled to decrease this year. I hope the incentive/charge per kWh does not. The program budget could instead be balanced by reducing energy consumption baselines in a way that does not disproportionately penalize departments that have made major efficiency investments. Given tight university budgets and ambitious environmental goals,  it is as important as ever to get campus energy prices right.

Posted in Uncategorized | Tagged , | 5 Comments

The Job Creation Shuffle

Renewable energy proponents and advocates of the Keystone pipeline finally agree on something: that the right way to count “job creation” is to focus narrowly on the jobs in the industry they want to boost and ignore the overall impact on employment.  Unfortunately, researchers who actually study employment are not on board.

The “green jobs” movement is currently having a break out moment in California, just as the fight over Keystone is headed towards a final showdown, with proponents bellowing more about the thousands of workers who will briefly be employed building the pipeline than the dozens who will operate it.


Photo Credit:

The “job creation” justification for government energy policies isn’t new, but its support among economists remains in the range of, well, zero.[1]  In the last couple weeks I’ve pinged leading macro, labor and environmental economists – many of whom have worked in the Obama administration – and got the same results that I got when I did this a few years ago: zero support for making energy policy based on job creation.[2]

Appearing and Disappearing Jobs All Over the Economy

The problem is that when it comes to creating or destroying jobs, counting the direct industry impact misses a big part of the picture.  In non-recession economic times – like today – most of the people who take a newly “created” job are leaving an existing job.  Or would have found another job.  So, the direct industry impact is smaller than claimed.

Then there are people who are displaced by the new jobs created – the coal miners who worked for the mine that is shut down; the workers at the incandescent light bulb plant; the fracking oil drillers in North Dakota laid off when cheaper crude from the tar sands is carried to market by the Keystone XL; or the workers who would have carried that same oil by rail if the Keystone weren’t built.  Of course, many of these people too will find other jobs, but some will become unemployed.

But the fundamental fallacy of counting jobs is that any government policy alters demand, supply, prices and wages throughout the entire economy.  Higher energy prices cause some energy-using industries to contract, reducing employment.   Higher taxes that pay for subsidizing an energy source make some companies less inclined to expand.   Reports of “green job creation” or the “jobs that will be created by Keystone” are just data cherry picking, not real analysis.

MonthlyUnemp1995-2014U.S. Monthly Unemployment Rate.  Source: Bureau of Labor Statistics

Most importantly, when energy policies change the economics of energy use, wages adjust – upward if there is now excess demand for labor in one sector, downward if there is weak demand in another. In the end, government energy policy is not going to noticeably change the long-run rate of unemployment.  Jobs are constantly created and destroyed throughout the economy.  It’s not about jobs but about good jobs at good wages.

Economists long ago agreed (yes agreed! It does happen) that what drives good jobs at good wages is education and training of workers, workplace policies like minimum wage, maximum work hours, and safety, and — and this is critical — companies that put workers in a position to create a lot of economic value.  That is, companies that have the capital and collective intellectual insight to create higher value products using fewer resources.

That’s why, outside of a recession, government should pursue energy policy to maximize the economic value energy creates (including the value consumers get from more affordable energy prices), while minimizing environmental impact and energy security risks.  Not to “create jobs.”

Job Creation During a Recession

During the last recession and years of high unemployment, there was an appropriate focus on short-run stimulus. (There is, in retrospect, less universal agreement among economists on how appropriate this was, though I have a hard time remembering many opponents during the darkest days at the end of 2008.)  There was disagreement in energy, and in all other sectors, about exactly which investments would create jobs most quickly.  But it was all about getting stimulus money out quickly and creating jobs in the plummeting economy.   Practically all economists saw those as extraordinary times that called for extraordinary response.

When the economy is no longer in a state of severe underutilized capacity, the stimulus justification fades.  We may not be back to full employment, but long before we get there, government policies to create jobs end up mostly crowding out other jobs that create as much or more economic value.

Jobs in the Long-Term

If you are talking about a program that would take years to roll out and longer to deliver any real impact, recession-based policies are irrelevant.  You can’t forecast the next recession and most of the time, the economy is growing.  So, let’s consider the long-term job creation arguments for energy policy.

First, there is the simplistic view that some forms of energy are more labor intensive and therefore create more jobs.  That would be great if they weren’t also more expensive.

But higher costs signal that more of society’s resources go into each unit of energy, which is destroying economic value.  Those higher costs ripple through all the energy-using industries, destroying jobs.  That ripple effect is much harder to measure than the direct count of jobs in the industry (and would not give the desired answer), so many advocates simply ignore them.

There is also a more dynamic argument, often made for renewable energy, that one state or country can gain a long-run economic advantage by investing in the next breakthrough technology.  Sometimes the proponent argues that clean energy is obviously a growth industry and if our city/state/country gets out ahead of others – and of private investors – we’ll be in great shape when the boom arrives.

But it’s tough to see how government policy makers will have a better shot generally at identifying emerging business opportunities than the private sector.  And the opportunity is ever present for using such investments to reward political supporters, or enrich one’s self, or just pursue an energy agenda the politician is confident is right in spite of all the contrary evidence.

Creating Virtuous Networks?

The more thoughtful version of the argument is that up-front investments will create agglomeration economies (also known as “network externalities”) that will lock in a location as the hub of the industry, the “next Silicon Valley” argument.  While this story makes a bit more economic sense in theory, it fails in practice.

In his excellent 2012 book, The New Geography of Jobs, my Berkeley colleague Enrico Moretti spells out the theory and evidence for agglomeration economies.  And then in considering locales that strategically decide to become the next technology or manufacturing hub he says “..[T]he track record on industrial public subsidies in the United States and Europe is not great.  It is simply too difficult for policymakers, even the brightest and best-intentioned ones, to identify winning industries before they become winners.” Indeed. And how about the not-so-bright and not-so-well-intentioned ones.  In an idealized setting, this could work, but in the real world it is much more likely to destroy economic value than to create it.

We Still Need A Strong Energy Policy

None of this suggests that government energy policy is unnecessary.  Serious negative environmental effects point to a significant role for regulation and pricing the externalities.  The need for new technologies calls for aggressively supporting R&D, where subsidizing the creation of knowledge spillovers is likely to create net benefits.  But job creation shouldn’t be on the list of considerations when policymakers debate energy policy – whether it’s building the Keystone XL or subsidizing renewable electricity.[3][4]


[1] Yes you can find an economist who supports long-term policies to create energy jobs, green or brown.  You can also find a scientist who thinks there is no human impact on the climate, or a doctor who doesn’t think children should be vaccinated.  But that’s not where 95%+ of the people in these professions come out.

[2] The editors of MIT Technology Review chimed in with the same message in an open letter to President Obama two years ago.

[3] A nice quote frequently retold in policy discussions on this subject is due to Rob Stavins in a 2009 New Yorker article, “Let’s say I want to have a dinner party. It’s important that I cook dinner, and I’d also like to take a shower before the guests arrive. You might think, well, it would be really efficient for me to cook dinner in the shower. But it turns out that if I try that I’m not going to get very clean and it’s not going to be a very good dinner. And that is an illustration of the fact that it is not always best to try to address two challenges with what in the policy world we call a single-policy instrument.”

[4] There is a wonkier discussion of energy jobs creation in my 2012 Journal of Economic Perspectives paper, “The Private and Public Economics of Renewable Electricity Generation,” which the American Economics Association makes available free here.

Posted in Uncategorized | Tagged , , | 10 Comments

How (and who) will pay for our energy infrastructure?

You may have heard that the Federal highway trust fund is running out of money because, darn it, people aren’t using enough gasoline. The transformation of our energy system is rapidly accelerating the need to confront a long-standing problem with how we pay for our transportation and utility infrastructure. For the most part we have paid for this infrastructure through taxes or surcharges on the fuels associated with them. Highway construction and maintenance is supported primarily by a tax on gasoline. Natural gas and Electricity distribution infrastructure is funded through volumetric charges on energy usage.

While at first blush this may seem like a logical, even efficient, approach the problem is that the costs of this infrastructure do not scale with the consumption of these fuels.   A BMW 7 series may tear up the same pavement as a Tesla S class, but only the Beamer is going to be chipping in for the repairs.   What was once a tolerable and subtle cross-subsidy has turned into a serious funding problem.   The somewhat paradoxical problem is that, as our energy consumption gets more efficient, we contribute less to these infrastructure costs. Since the costs don’t go down, we’re left with a funding shortfall.

On the electricity side, the infrastructure is funded through rates that are linked to the volume of kilo-watt hours (KWh) consumed. Its an even more extreme version of the gas-tax problem. Imagine a world where your fourth tank fill-up in a month costs 3 times as much as your first fill-up. That’s a typical electric rate in California. Slide1

This figure illustrates the rate structure for PG&E in my area. The more you consume the higher the per-kWh price gets. On the fourth step (tier) prices rise to over 32 cents/kWh. The problem is that the kWh I consume cost PG&E around 10 cents/kWh (Even that 10 cents includes a bunch of fixed costs like wholesale grid charges, and the costs of funding the CAISO and the CPUC).   The rest pays for transmission, distribution, and other “system” costs – including bond payments for the electricity crisis – that don’t go down when I reduce my consumption. PG&E recovers these fixed costs through a usage-based, per kWh fee.

While this can be a powerful incentive for conservation (and for installing solar panels), it creates a direct conflict between the goals of promoting efficiency and keeping our infrastructure funded. The less gas or electricity I consume, the more those costs need to be recovered through higher taxes or electricity rates.  You could argue that these “mark-ups” of energy costs help to offset another market failure, the environmental cost of energy consumption, but in California we are already pricing the CO2 – at least somewhat.  You could make the case that gasoline should still cost more, but on the electricity side, its pretty tough to justify a 32 cent/kWh price based on environmental damages alone.

These funding systems can also create a situation where individual consumers make choices driven by opportunities to shift costs onto others.   The guy who came to my house last week – yes we have door-to-door solar salesman in Davis – offered to install solar panels for a contract starting around 17 cents a kWh (by the way, sales guy, if you’re reading this call me).   If I take this offer, I’m swapping out power that costs 17 cents for power that cost 10 cents – a losing proposition, right? Except that I’m paying 32 cents for that power and take that other 22 cents or so on the last tier of my electric rate and shift those costs over to other PG&E customers. So I’m saving 15 cents a kWh (again, call me…) but total costs, thanks to the contributions of other PG&E customers,  have gone up by 7 cents.

On a small scale, we’ve lived with this for many years, but we are rapidly reaching the point where raising rates on those without solar to recover these infrastructure costs won’t be viable any longer.   That leaves us with three choices

  1. Stick utility shareholders with the costs.
  2. Reduce the money we spend on infrastructure – perhaps dramatically.
  3. Disconnect the recovery of these costs from the usage of fuel.

Many jurisdictions have been searching, sometimes clumsily, for ways to implement option C. We have the infamous “prius tax” in South Carolina and the solar tax in Arizona. Here in California, we have a proposed road user fee that would start to recover some highway costs on a per-car, rather than per gallon of gas, basis.

In utility regulation the phrase “revenue decoupling” has been around for a long-time. The concept was originally pursued as a means to stop utilities from trying to expand the volumes of product that they sell, and to help incentivize them to embrace energy efficiency.   At its core, revenue decoupling means finding a way to allow utilities to recover their prudent fixed costs in a way that’s not linked to consumption. Some kind of user fee that’s not based on volume is the definition of revenue decoupling.  Distributed generation and improved efficiency aren’t likely to reduce infrastructure costs dramatically anytime soon, so I see more user fees in our future.

Posted in Uncategorized | Tagged , | 10 Comments